Critical Tests Among Models of Risky Decision Making

Michael H. Birnbaum
Konstanz, September, 2019

Critical Test

- 0
- 0 :
- 0 :
- $0: 8$
$000:$
$000:$
$0 \bigcirc 0$ O:
- © - © :
$\bigcirc \bigcirc \bigcirc$
- - 0 :
$\bigcirc \subset \bigcirc$
$\bigcirc \subset$

Critical Tests are Theorems of
One Model that are Violated by Another Model

- This approach has advantages over tests or comparisons of fit.
- It is not the same as "axiom testing."
- Use model-fitting to rival model to predict where to find violations of theorems deduced from model tested.

Outline

- I will discuss critical properties that test between nonnested theories: CPT and TAX.
- Lexicographic Semiorders vs. family of transitive, integrative models (including CPT and TAX).
- Integrative Contrast Models (e.g., Regret, Majority Rule) vs. transitive, integrative models.

Cumulative Prospect Theory/ Rank-Dependent Utility (RDU)

$$
\operatorname{CPU}(G)=\sum_{i=1}^{n}\left[W\left(\sum_{j=1}^{i} p_{j}\right)-W\left(\sum_{j=1}^{i-1} p_{j}\right)\right] u\left(x_{i}\right)
$$

TAX Model

"Prior" TAX Model

Assumptions: $\quad G=(x, p ; y, q ; z, 1-p-q)$

$$
\begin{aligned}
& U(G)=\frac{A u(x)+B u(y)+C u(z)}{A+B+C} \\
& A=t(p)-\delta t(p) / 4-\delta t(p) / 4 \\
& B=t(q)-\delta t(q) / 4+\delta t(p) / 4 \\
& C=t(1-p-q)+\delta t(p) / 4+\delta t(q) / 4
\end{aligned}
$$

TAX Parameters

For $0<x<\$ 150$ $u(x)=x$
Gives a decent approximation. Risk aversion produced by δ. $\delta=1$.

TAX and CPT nearly identical for binary (two-branch) gambles

- CE ($x, p ; y$) is an inverse-S function of p according to BOTH TAX and CPT, given their typical parameters.
- Therefore, there is little point trying to distinguish these models with binary gambles.

Non-nested Models

CPT and TAX nearly identical inside the prob. simplex

Testing CPT

TAX:Violations of:

- Coalescing
- Stochastic Dominance
- Lower Cum. Independence
- Upper Cumulative Independence
- Upper Tail Independence
- Gain-Loss Separability

Testing TAX Model

CPT: Violations of:

- 4-Distribution Independence (RS')
- 3-Lower Distribution Independence
- 3-2 Lower Distribution Independence
- 3-Upper Distribution Independence (RS')
- Res. Branch Indep (RS')

Stochastic Dominance

- A test between CPT and TAX:
$G=(x, p ; y, q ; z)$ vs. $F=(x, p-s ; y, s ; z)$
Note that this recipe uses 4 distinct consequences: $x>y$ ' $>y>z>0$; outside the probability simplex defined on three consequences.
CPT \Rightarrow choose G, TAX \Rightarrow choose F
Test if violations due to "error."

Error Model Assumptions

- Each choice pattern in an experiment has a true probability, p, and each choice has an error rate, e.
- The error rate is estimated from inconsistency of response to the same choice by same person over repetitions. The "true" p is then estimated from consistent (repeated) responses to same question.

Violations of Stochastic Dominance

A: 5 tickets to win $\$ 12$ 5 tickets to win $\$ 14$ 90 tickets to win $\$ 96$

B: 10 tickets to win $\$ 12$
5 tickets to win $\$ 90$
85 tickets to win $\$ 96$

122 Undergrads: 59\% TWO violations (BB)
28% Pref Reversals (AB or BA)
Estimates: $e=0.19 ; p=0.85$
170 Experts: 35% repeated violations 31% Reversals
Estimates: $e=0.20 ; p=0.50$

42 Studies of Stochastic Dominance, $n=12,152$

- Large effects of splitting vs. coalescing of branches
- Small effects of education, gender, study of decision science
- Very small effects of 15 probability formats and request to justify choices.
- Miniscule effects of event framing (framed vs unframed)

Allais Paradox Dissection

	Restricted Branch Independence	
Coalescing	Satisfied	Violated
Satisfied	EU, PT*,CPT*	CPT
Violated	PT	TAX

Summary: Prospect Theories not Descriptive

- Violations of Coalescing
- Violations of Stochastic Dominance
- Violations of Gain-Loss Separability
- Dissection of Allais Paradoxes: viols of coalescing and restricted branch independence; RBI violations opposite of Allais paradox; opposite CPT.

Results: CPT makes wrong predictions for all 12 tests

- Can CPT be saved by using different formats for presentation?
- Violations of coalescing, stochastic dominance, lower and upper cumulative independence replicated with 14 different formats and thousands of participants.
- See Birnbaum, Psych Review 2008, \& papers 2008-2017 in JDM.

Lexicographic Semiorders

- Intransitive Preference.
- Priority heuristic of Brandstaetter, Gigerenzer \& Hertwig is a variant of LS, plus some additional features.
- In this class of models, people do not integrate information or have interactions such as the probability X prize interaction in family of integrative, transitive models (CPT, TAX, GDU, EU and others)

LPH LS: $G=(x, p ; y) F=\left(x^{\prime}, q ; y^{\prime}\right)$

- If $\left(y-y^{\prime}>\Delta\right)$ choose G
- Else if $\left(y^{\prime}-y>\Delta\right)$ choose F
- Else if $(p-q>\delta)$ choose G
- Else if $(q-p>\delta)$ choose F
- Else if $\left(x-x^{\prime}>0\right)$ choose G
- Else if $\left(x^{\prime}-x>0\right)$ choose F
- Else choose randomly

Family of LS

- In two-branch gambles, $G=(x, p ; y)$, there are three dimensions: $L=$ lowest outcome (y), $P=$ probability (p), and $H=$ highes \dagger outcome (x).
- There are 6 orders in which one might consider the dimensions: LPH, LHP, PLH, PHL, HPL, HLP.
- In addition, there are two threshold parameters (for the first two dimensions).

Testing Lexicographic Semiorder Models

$$
\begin{aligned}
& \text { New Critical Tests } \\
& \text { distinguishing family of } L S \\
& \text { from }\{T A X, C P T, E U\}
\end{aligned}
$$

- Dimension Interaction: Decision should be independent of any dimension that has the same value in both alternatives.
- Dimension Integration: indecisive differences cannot add up to be decisive.
- Priority Dominance: if a difference is decisive, no effect of other dimensions.

Taxonomy of choice models

	Transitive	Intransitive
 Integrative	EU, CPT, TAX	Regret, Majority Rule
 Integrative	Additive, CWA	Additive Diffs, SDM
Not interactive or integrative	1-dim.	LS, PH

Dimension Interaction

Risky	Safe	TAX	LPH	HPL
$(\$ 95, .1 ; \$ 5)$	$(\$ 55, .1 ; \$ 20)$	S	S	R
$(\$ 95, .99 ; \$ 5)$	$(\$ 55, .99 ; \$ 20)$	R	S	R

Family of LS

- 6 Orders: LPH, LHP, PLH, PHL, HPL, HLP.
- There are 3 ranges for each of two parameters, making 9 combinations of parameter ranges.
- There are $6 \times 9=54$ LS models.
- But all models predict SS, RR, or ??.

Results: Interaction $n=153$

Risky	Safe	$\%$ Safe	Est. p
$(\$ 95,1 ; \$ 5)$	$(\$ 55, .1 ; \$ 20)$	71%	.76
$(\$ 95, .99 ; \$ 5)$	$(\$ 55, .99 ; \$ 20)$	17%	.04

Analysis of Interaction

- Estimated probabilities:
- $P(S S)=0$ (prior PH)
- $P(S R)=0.75$ (prior TAX)
- $P(R S)=0$
- $P(R R)=0.25$
- Priority Heuristic: Predicts SS

Probability Mixture Model

- Suppose each person uses a LS on any trial, but randomly switches from one order to another and one set of parameters to another.
- But any mixture of LS is a mix of SS, RR, and ??. So no LS mixture model explains SR or RS.

Results: Dimension Integration

- Data strongly violate independence property of LS family
- Data are consistent instead with dimension integration. Two small, indecisive effects can combine to reverse preferences.
- Observed with all pairs of 2 dims.

Studies of Transitivity

- LS models violate transitivity: $A>B$ and $B>$ C implies $A>C$.
- Birnbaum \& Gutierrez (2007) tested transitivity using Tversky's gambles, using typical methods for display of choices.
- Text displays and pie charts with and without numerical probabilities. Similar results with all 3 procedures.

Replication of Tversky ("69) with Roman Gutierrez

- 3 Studies used Tversky's 5 gambles, formatted with tickets and pie charts.
- Exp 1, $n=251$, tested via computers.

Three of Tversky's (1969) Gambles

- $A=(\$ 5.00,0.29 ; \$ 0)$
- $C=(\$ 4.50,0.38 ; \$ 0)$
- $E=(\$ 4.00,0.46 ; \$ 0)$

Priority Heurisitc Predicts:
A preferred to C, C preferred to E,
But Epreferred to A. Intransitive.
TAX (prior): $E>C>A$

Response Combinations

Notation	(A, C)	(C, E)	(E, A)	
000	A	C	E	$* P H$
001	A	C	A	
010	A	E	E	
011	A	E	A	
100	C	C	E	
101	C	C	A	
110	C	E	E	TAX
111	C	E	A	\star

Results-ACE

pattern	Rep 1	Rep 2	Both
$000($ PH $)$	10	21	5
001	11	13	9
010	14	23	1
011	7	1	0
100	16	19	4
101	4	3	1
$110($ TAX $)$	176	154	133
111	13	17	3
sum	251	251	156

Comments

- Results were surprisingly transitive.
- Differences: no pre-test, selection;
- Probability represented by \# of tickets (100 per urn); similar results with pies.
- Regenwetter and colleagues: studies and new analyses (random utility definition of transitivity); they also conclude that evidence against transitivity is extremely weak.
- With Jeff Bahra: individual data also transitive

Summary

- Priority Heuristic model's predicted violations of transitivity are rare.
- Dimension Interaction violates any member of LS models including PH.
- Dimension Integration violates any LS model including PH.
- Evidence of Interaction and Integration compatible with models like EU, CPT, TAX.
- Birnbaum, J. Mathematical Psych. 2010.

Integrative Contrast Models

- Family of Integrative Contrast Models
- Special Cases: Regret Theory, Majority Rule (aka Most Probable Winner)
- Predicted Intransitivity: Forward and Reverse Cycles
- Birnbaum, M. H., \& Diecidue, E. (2015). Testing a class of models that includes majority rule and regret theories: Transitivity, recycling, and restricted branch independence. Decision, 2, 145-190.

Integrative, Interactive Contrast Models

$$
\begin{aligned}
& A \succ B \Leftrightarrow \sum_{i=1}^{n} \phi\left(E_{i}\right) \psi\left(a_{i}, b_{i}\right) \\
& A=\left(a_{1}, E_{1} ; a_{2}, E_{2} ; \ldots ; a_{n}, E_{n}\right) \\
& B=\left(b_{1}, E_{1} ; b_{2}, E_{2} ; \ldots ; b_{n}, E_{n}\right)
\end{aligned}
$$

Assumptions

$\psi\left(a_{i}, b_{i}\right)=-\psi\left(b_{i}, a_{i}\right)$
$\psi\left(a_{i}, b_{i}\right)=0 \Leftrightarrow a_{i}=b_{i}$
Difference Model:
$\psi\left(a_{i}, b_{i}\right)=f\left[u\left(a_{i}\right)-u\left(b_{i}\right)\right]$

Special Cases

- Majority Rule (aka Most Probable Winner)
- Regret Theory
- Other models arise with different functions, f.

Regret Aversion

$$
\psi[a, c] \geq \psi[a, b]+\psi[b, c], \quad u(a)>u(b)>u(c)
$$

Regret Model

$$
\begin{aligned}
& f[u(a)-u(b)]=|u(a)-u(b)|^{\beta}, \quad u(a)>u(b) \\
& f[u(a)-u(b)]=-|u(a)-u(b)|^{\beta}, \\
& \beta>1
\end{aligned}
$$

Majority Rule Model

$$
f[u(a)-u(b)]=\left[\begin{array}{cl}
1 & \text { if } u(a)>u(b) \\
0 & \text { if } u(a)=u(b) \\
-1 & \text { if } u(a)<u(b)
\end{array}\right.
$$

Predicted Intransitivity

- These models violate transitivity of preference
- Regret and MR cycle in opposite directions
- However, both REVERSE cycle under permutation over events; i.e., "juxtaposition."

Concrete Example

- Urn: 33 Red, 33White, 33 Blue
- One marble drawn randomly
- Prize depends on color drawn.
- $A=(\$ 4, \$ 5, \$ 6)$ means win $\$ 400$ if Red, win $\$ 500$ if White, $\$ 600$ if Blue. (Study used values $\times 100$).

Majority Rule Prediction

- $A=(\$ 4, \$ 5, \$ 6)$
- $B=(\$ 5, \$ 7, \$ 3)$
- $C=(\$ 9, \$ 1, \$ 5)$
- AB: choose B
- BC: choose C
- CA: choose A
- Notation: 222
- $A^{\prime}=(\$ 6, \$ 4, \$ 5)$
- $B^{\prime}=(\$ 5, \$ 7, \$ 3)$
- $C^{\prime}=(\$ 1, \$ 5, \$ 9)$
- $A^{\prime} B^{\prime}$: choose A^{\prime}
- $B^{\prime} C^{\prime}$: choose B^{\prime}
- C' A^{\prime} : choose C'
- Notation: 111

Regret Prediction

- $A=(\$ 4, \$ 5, \$ 6)$
- $B=(\$ 5, \$ 7, \$ 3)$
- $C=(\$ 9, \$ 1, \$ 5)$
- AB: choose A
- BC: choose B
- CA: choose C
- Notation: 111
- $A^{\prime}=(\$ 6, \$ 4, \$ 5)$
- $B^{\prime}=(\$ 5, \$ 7, \$ 3)$
- $C^{\prime}=(\$ 1, \$ 5, \$ 9)$
- A' B' : choose B'
- $B^{\prime} C^{\prime}$: choose C'
- C' A' : choose A'
- Notation: 222

Non-Nested Models

Study

- 240 Undergraduates
- Tested via computers (browser)
- Clicked button to choose
- 30 choices (includes counterbalanced choices)
- 10 min. task, 30 choices repeated.

E Decisions between Gambles - Windows Internet Explorer \square						
Eile Edit view Fagvorites Iools Help						
\bigcirc © Which do you choose?						
	Choose	Color of Marble Drawn				
		Red	White	Blue		
	OFirst gamble	\$100	\$500	\$900		
	O Second gamble	\$500	\$700	\$300		
\leqslant				\square		\geqslant
Done		(2) Inter			100\%	-

Recycling Predictions of Regret and Majority Rule

Results

- Most people are transitive.
- Most common pattern is 112, pattern predicted by TAX with prior parameters.
- However, 2 people were perfectly consistent with MR on 24 choices (incl. Recycling pattern).
- No one fit Regret theory perfectly.

Results: Continued

- Among those few (est. ~10\%) who cycle (intransitive), most have no regrets (i.e., they appear to satisfy MR).
- Systematic Violations of RBI.
- Suppose 5-10\% of participants are intransitive. Do we think that they indeed use a different process? Can we increase the rate of intransitivity?

Conclusions

- Violations of transitivity predicted by regret, MR, LS appear to be infrequent.
- Violations of Integrative independence, priority dominance, interactive independence are frequent, contrary to family of LS, including the PH.
- "New paradoxes" rule out CPT and EU but are consistent with TAX.
- CPT, TAX, and EU are transitive and could have been refuted by systematic intransitivity, but data did not require rejection for most people.

Editing: Another way to become intransitive

- Original Prospect Theory- (KT 79). Maybe people edit some choices but not others.
- B, P, \& L (1999). Perhaps people would "see" stochastic dominance in simple choices and not in more complex ones.
- This theory properly tested in JDM (2016).

Transitivity Analysis: R-scripts

for Monte Carlo and

 Bootstrapping in TE models.- Birnbaum, M. H., Navarro-Martinez, D., Ungemach, C., Stewart, N. \& Quispe-Torreblanca, E. G. (2016). Risky decision making: Testing for violations of transitivity predicted by an editing mechanism. Judgment and Decision Making, 11, 75-91.
- http://journal.sjdm.org/vol11.1.html

Results

- Results did not provide much evidence (if any) for intransitivity predicted by editing.
- People violated stochastic dominance too often even in the "easy" choices we thought would be "transparent" or at least "translucent"
- Paper shows proper methods for analysis of transitivity/intransitivity.

